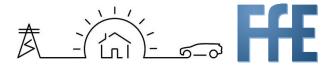
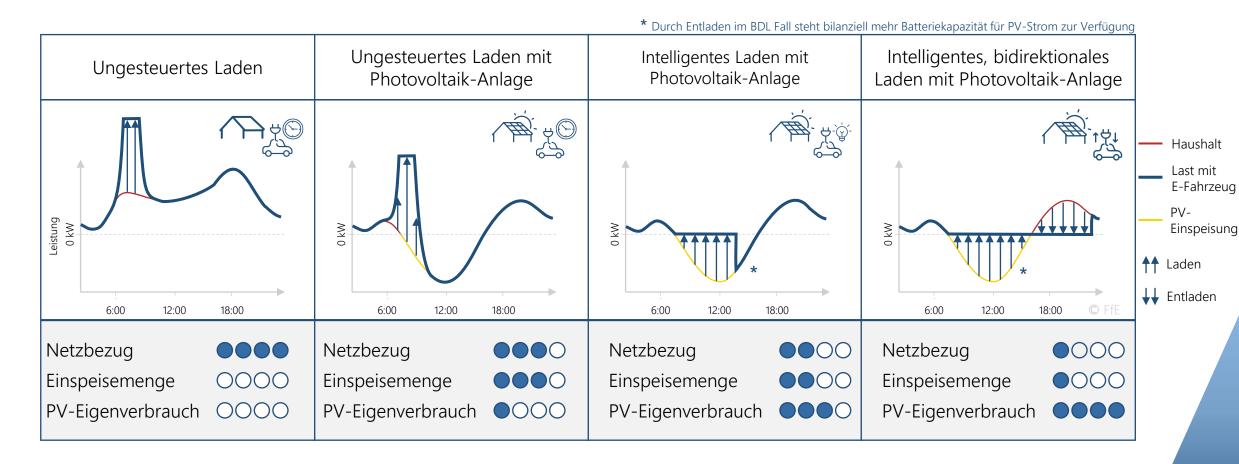


Use Case PV-Eigenverbrauchsoptimierung

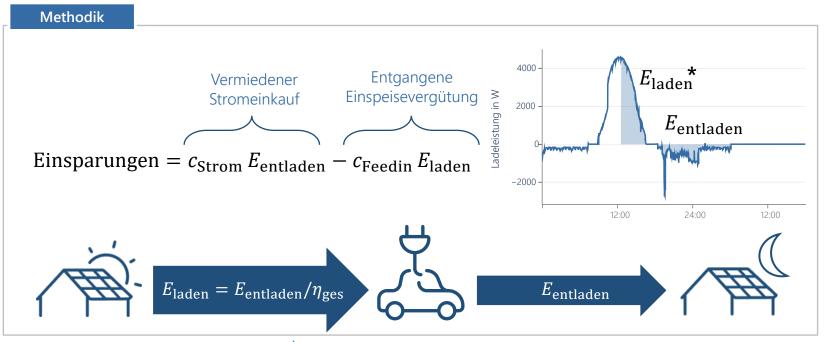

Executive Summary


Autoren:

Vincenz Regener (vregener@ffe.de) Adrian Ostermann (aostermann@ffe.de) Mehr Infos unter https://bdl-auswertungen.de/

Bidirektionales Lademanagement - BDL

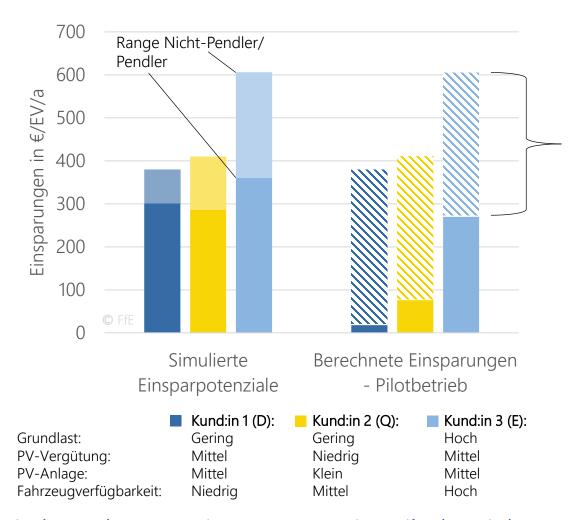
PV-Eigenverbrauchsoptimierung – Vom Referenzfall zum intelligenten, bidirektionalen Laden (BDL)



Durch BDL können Netzbezug und PV-Rückspeisung reduziert und somit Stromkosten gegenüber dem ungesteuertem Laden eingespart werden.

Einsparungen durch den PV Use Case: Eine Abschätzung

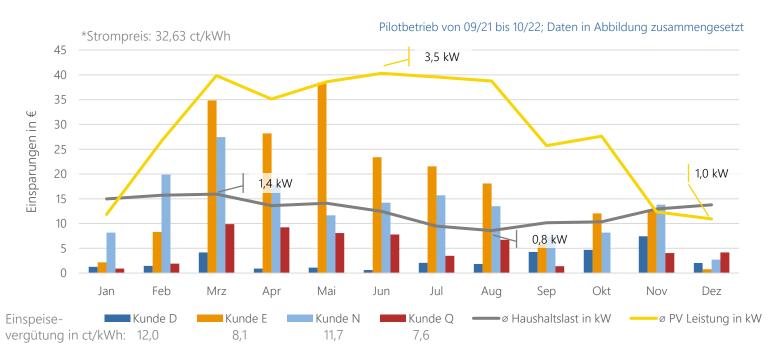
* E_{laden} bezieht sich nur auf den Anteil der Ladeenergie, der nicht zum Fahren verwendet wird.


Die vier Pilotkund:innen, die dauerhaft am PV Use Case teilgenommen haben, konnten nach ca. einem Jahr Laufzeit durch Rückspeisen aus dem Fahrzeug durchschnittlich 116 € oder 7,5 % ihrer Stromkosten einsparen.

Erkenntnisse

- Externe Parameter wie **Strompreis** c_{Strom} und **Einspeisevergütung** c_{Feedin} sind entscheidend für die Ersparnisse. Ist die Einspeisevergütung zu hoch (oder der Strompreis zu niedrig) führt der Use Case zu Verlusten.
- Als interne Parameter sind insbesondere die entladene Energiemenge $E_{\rm entladen}$ und der Gesamtwirkungsgrad $\eta_{\rm ges}$ des Systems für die Einsparungen durch den Use Case entscheidend.
- Die Erlösabschätzung ist aufgrund fehlender Vergleichswerte nicht trivial und die Methodik mit mehreren Unsicherheiten behaftet.
- Es wird angenommen, dass die entladene Energie ursprünglich zu 100 % aus der PV-Anlage stammt. Fremdladen oder Netzbezug werden vernachlässigt, sind aber durch die Laderegelung nicht ausgeschlossen.
- Die Methode berücksichtigt nur die direkten Einsparungen aus dem Entladen, nicht aber die Vorteile des Leistungsbezug in Zeiten hoher PV-Erträge.

V2H PV-Eigenverbrauchsoptimierung: Vergleich der Einsparungen Simulation vs. Pilotbetrieb

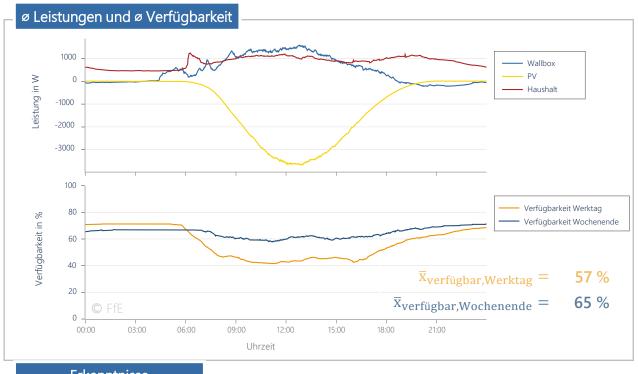

V2H – Vehicle to Home

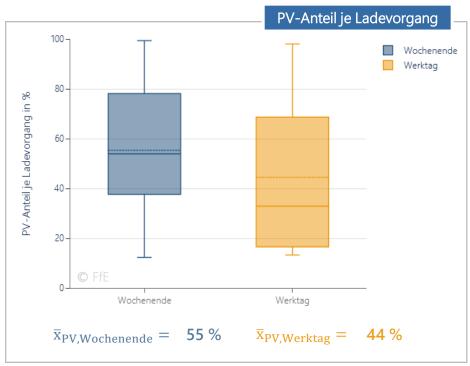
- Abweichungen:
- Regelung vs. Optimierung
- Fehlende PV-Prognose
- Kund:innenverhalten
- Leicht abweichende Parameter und Zeitreihen (Andere Wetterdaten, anderer Haushaltslastgang, ...)
- Wirkungsgrad-Optimierung im Laufe des Pilotbetriebs
 - Verringerter Standby-Verlust
 - Angepasste Ladeschwellen

Die berechneten Einsparungen im Pilotbetrieb erreichen 5 bis 45 % der theoretischen Einsparpotenziale. Bei zukünftigen Serienprodukten sind deutlich bessere Werte zu erwarten!

Wärmepumpen und andere elektrische Verbraucher: Eine ideale Ergänzung für den PV Use Case

Leistungsstarke elektrische Verbraucher wie Wärmepumpen erhöhen nicht nur die potenziell **entladene Energiemenge** $E_{\rm entladen}$, sondern verbessern durch hohe Leistungen auch den **Roundtrip-Wirkungsgrad** $\eta_{\rm ges}$.


Erkenntnisse


- Einsparungen durch den PV Use Case korrelieren von allen Einflussgrößen am stärksten mit dem Haushaltsstromverbrauch, da dieser Bedarf meist die limitierende Größe für die Rückspeisungen aus dem Fahrzeug ist.
- Bei den Kund:innen mit elektrischer Wärmeerzeugung sind diese Geräte maßgeblich für den Haushaltsstromverbrauch und damit die entladene Energiemenge $E_{\rm entladen}$ verantwortlich.
- Die maximalen Ersparnisse fallen daher nicht immer in die Sommermonate, sondern in die Übergangszeit, wo noch geheizt wird.
- Nur bei gleichzeitig hohem
 Haushaltsverbrauch und hoher
 Solareinspeisung kann der Use Case sein volles Potenzial entfalten.

^{*}durchschn. Strompreis Haushaltskunden, Quelle: BNetzA: Monitoringbericht 2021, https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht Energie2021.pdf? blob=publicationFile

PV Eigenverbrauchsoptimierung: Ein attraktiver Use Case nicht nur für das Wochenende

Erkenntnisse

- Die Verfügbarkeit der Fahrzeuge hat einen signifikanten Einfluss auf die geladene PV-Energie und damit die Erlöse aus dem Use Case.
- Die Verfügbarkeit unter den Pilotkunden ist unter der Woche nur unwesentlich geringer als am Wochenende, sodass der Use Case auch an Werktagen attraktiv ist.
- Repräsentativität der Fahrprofile im Pilotbetrieb kann nicht belegt werden. Im Bundesdurchschnitt sind auch niedrigere Verfügbarkeiten möglich.

Die wichtigsten Erkenntnisse des PV Use Cases: Wann ist Eigenverbrauchsoptimierung ein Erfolg?

*Bei einem angenommenen Verbrauch von 20 kWh/100 km inkl. Rekuperation

Durch mehrere technische Verbesserungen können für den Serienbetrieb wesentlich höhere Einsparungen erwartet werden.

Repräsentative/r Kund:in Steckbrief PV Eigenverbrauchsoptimierung (364 Tage)

			9					9 (33.		3-7			
te	Ν	etzanschlus	spunkt	Haushalt			Р	hotovolta	ik	****	52 % Autarkiegrad		0 % prauchsquote
Kundenkennwerte	Energie	Einspeisung Bezug	Σ: 14.567 kWh Ø: 40,1 kWh /Tag Σ: 5.698 kWh Ø: 15,6 kWh/Tag	Bezug Bezug		Σ: 9.376 kWh Ø: 25,7 kWh/Tag	Energie	Einspeisung		Σ: 20.822 kWh Ø: 57,2 kWh/Tag	+9 % Differenz ggü Sofortladen	+ Differ	5 % renz ggü. ortladen
Kunder	eistung	Grundlast (Nachts) Spitzeneinspeisung	977 W 16.992 W	Grundlast (Nach	nts)	935 W 8.656 W	eistung	Installierte Leistu Spitzeneinspeisu		17,4 kWp 17.436 W		Σ: 157, 8 Ø: 0,43 €	
rte		9,9 h 6,3 h Ø Ansteckdauer		Ø 15,0 kWh pro Ansteckvorgang davon 73,2 % PV-Strom	Leistung in W	2000-				Netzanschluss PV Wallbox Haushalt	PV-Eigen Eigenverbrauch	verbrauch Netzrückspo	
Fahrzeugkennwerte		84 kWh geladen 1188 kV entlade		58,1 % Ø Ziel-SoC -0,37 % tatsächliche Abweichung	Mod	00:00:00 06:00:00 dus 594 kWh	Uh		15,6	Ø Lastprofil	Mit angestecktem Fahrzeug gieflüsse pro Tag 12,9kWh	Haushalt	25,7
F	zı Betr	Ø	05:40 Uhr typische Abfahrtszeit 32 min Standard- abweichung	LZSoC LminSoC ISO Pause Untätig	LZSoC LminSoC SO Pause Untätig	85 h	1965 h 5	kWh 57,2 kWh	2,8 kWh PV 7,4 kWh	10,2 kWh	9,7 kWh 3,2 kWh Einspeisung hren(bilanziell)	40,1 kWh 6,9 kWh	

Erklärungen zum Kundensteckbrief

	letzanschluss	spunkt	Haushalt		Photovoltaik	***	Autarkiegrad = Anteil des Eigenverbrauchs am	Eigenverbrauchs- quote = Anteil des	
stung Energie	Einspeisung Bezug	Σ: 14.567 kWh Ø: 40,1 kWh /Tag Σ: 5.698 kWh Ø: 15,6 kWh/Tag	Bezug	Σ: 9.376 kWh Ø: 25,7 kWh/Tag	Einspeisung	Σ: 20.822 kWh Ø: 57,2 kWh/Tag	gesamten Verbrauch Differenz ggü. synthetischem Sofortladen	Eigenverbrauchs an der Eigenproduktion Differenz ggü. synthetischem Sofortladen	
Leistung	Grundlast (Nachts) Spitzeneinspeisung Spitzenbezug	itzeneinspeisung 16.992 W		8.656 W	Installierte Leistung Spitzeneinspeisung	17,4 kWp 17.436 W	Abschätzung der Einsparungen aus Differenz zwischen vermiedenem Stromeinkauf und Entgangener Einspeisevergütung		
	/on 06:00 – Von 22:0 22:00 Uhr 06:00 U Ø Ansteckdauer		Ø geladene Energiemenge Zwischen Anstecken und Abstecken. Gesamter Anteil der PV-Energie an der Ladeenergie	2000- 0- 2000- -4000-	Lastga wä	chschnittlicher ing eines Tages ährend des rtungszeitraums	PV-Eigenvebrauch des Haushalts zu Zeiten mit und zu Zeiten ohne angestecktes E-Fahrzeug. Um beide Zahlen ins Verhältnis zu setzen, wurden die Diagrammflächen mit der gesamten PV-		
	insgesamt geladene Energiemenge insgesamt entladene Energiemenge		Ø Ziel-SoC, sowie die tatsächliche SoC-Abweichung zum angegebenen Zeitpunkt	LWSoC: Laden-Wunsch-So im BDL Modus, wird in LW LminSoC: Laden auf den N ISO-Pause: Fahrzeug ist in Untätig: Fahrzeug ist untät	V-Strom eistung, aktiv eingestellt durch Kun- C, falls Ziel nicht rechtzeitig erreich SoC mit voller Leistung geladen fin SoC mit voller Leistung der ISO Pause ig Erkennung kann z.B. auch ein Lader stattfinden	t wird Lastprofil Energy n im	jew Fahrzeug Durchschnittliche um das BDL-Fahr Annahme: Hausha	e tägliche Energieströme rund rzeug naltslast nicht flexibel, priorisier zwischen geladener und	
Zus Lade BDI h	ätzliche Ent- und Ladeda und Ladeenergie pro evorgang durch Nutzung Modus im Vergleich zu nypothetisch Nutzung vor Sofortladen DL Modus vs. Sofortlader	des der n	Häufigste übermittelte Abfahrtszeit, sowie die Standard- abweichung aller übermittelten Abfahrtszeiten	LZSoC LminSoC ISO Pause Untätig	57,2 kWh	2,0 KWII	entladener Energi bilanziell). Bisher ohne Wirku Abweichungen du	ie (Fahren/ Fremdladen ungsgradverluste der Wallbox urch Rundungsfehler möglich 6,9 kWh	